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•  Two (originally uncoupled) questions:
1.  Why can’t we do a better job of quantitatively assessing 

and optimizing new measurements impact on 
understanding of the climate system?

–  Significant improvement in quantitatively tracing from measurement 
to instrument design via system engineering approaches

–  Extend to “science system engineering” at higher level of 
abstraction

2.  Why can’t we have smaller uncertainties in sea level rise 
by 2100?

–  Range from ~20 cm to ~200 cm 
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Better quantitative characterization of these complex systems through the application of system engineering and 
uncertainty quantification methods would enable:

• Improved science analysis results
• Improved science traceability for optimizing measurement system (mission and 

instruments) design
• Improved prioritization of missions and instruments
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Models

ISSM
•  Ice Sheet System Model
•  Adjoint capabilities
•  UQ analysis using 

DAKOTA framework

ECCO/MITgcm

•  Estimating the Circulation 
and Climate of the Ocean

•  Adjoint capabilities

Adjoint capability enables easy integration of real or simulated 
observations for parameter estimation. 

Antarctica Greenland
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•  Step 1 – single parameter sensitivity experiments
–  Ocean/ice melt rate; viscosity; basal drag; Surface Mass 

Balance
•  Step 2 – Initial Monte Carlo analysis

–  varying most influential parameters from step 1, over extreme 
(high SLR) min/max range

–  1 and 2000 partition runs - equal area
•  Step 3 – refined Monte Carlo analysis

–  More credible parameter mix/max for next 100 yrs
–  27 “smart” partitions – designed around drainage basins and 

climate regions
•  Step 4 – scenario driven / time evolved parameter 

change
–  Future work

Parameter 
values 
applied as  
constant 
values for 
100 yr 
durations

Each AIS UQ Monte-Carlo Experiment:  Varied 4 parameters, 
200 values each, 800 runs total for each experiment
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Min 95% = 0.103 m
Max 95% = 1.719 m
Min 95% Bedmap one partition = 0.609 m
Max 95% Bedmap one partition = 2.13 m
Min 95% Delta Bedmap−Control = 0.505 m
Max 95% Delta Bedmap−Control = 0.41 m

Uncertainties in Bedrock Topography

•  Bedmap 1 vs Modified Bedmap 2:  ~0.4m (~33%) mean 
SLR difference at 100yrs for extreme climate scenario

•  Residual uncertainty in AIS topography is ~ Bedmap1 / 
Bedmap 2 correction

•  Completing high resolution bedmap of AIS is a 
quantifiably low risk / high pay-off measurement
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Climate split 
~@2km based 
boundary

Drainage basin 
based boundary

•  Climate zone - per 
Palerme et al 2016 
(CMIP5 comparison / 
summary paper)
•  Surface melt regions 
from DeConto et al., 
2016
•  Drainage basins per 
Bamber / Rignot / Zwally
•  Ocean regions per 
discussions with M. 
Schodlok (ECCO2)
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Step 2 – single partition 
Monte-Carlo

Step 3 –  smart partition 
run, same min/max

•  General effect is reduction in the spread of sea level 
contribution since now not all parts of AIS are assumed 
to have the same parameter values 
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“realistic” min/max parameter value 
selection for smart partitions

•  All min/max values are % multipliers relative to control
•  Literature review for RCP 8.5 climate predicts for each of the 27 

smart partition areas
–  RCP 8.5 regional GCM model predicts used to derive SMB and ice viscosity 

(based on surface temperature)
•  Minimum +/- on viscosity set to 5% to reflect floor uncertainty value

•  Basal drag min/max derived from range of basal drag inversion 
solutions for different model resolutions and optimization levels -> 
resulted in +/- 15% to +/-25% estimate, region dependent

–  Assumed that over 100 yr time scale our present uncertainty, and not 
substantial new lubrication / warming, is what drives the range

•  Basal (ocean i/f) melt rate – min based on present day mean 
observation best fit, max based on results of our basal melt 
sensitivity experiment – multiplied calculated sensitivity per deg C, 
by available delta T from CDW outside each of the cavities

–  Assumes worst case scenario that warmest present day CDW water makes 
it into ice cavity everywhere around AIS
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•  Examples of parameter range differences for “realistic” vs “extreme” 
runs (% relative to control, which is “best estimate of current 
conditions”):

•  Basal drag:  (-15 to -25%) to (+15 to 25%); 0 to -40%
•  Viscosity: (-5 to -10%) to +5%;  -60% to 0
•  Melt rate: 0 to (2x to >200x) ; 0 to 10x 

Note: This black curve is 
same as red curve on 
previous slide – different 
scale
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•  Experiment to look at 100 yr SLR impact of “instant loss of all 
AIS ice shelves” (removing backstress)

–  Achieved by new fixed ice shelf at current grounding line.  As 
grounding line retreats, shelf can slowly re-form

–  Max. 95% difference case: ~0.4 m
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•  Ice shelf cavity interface water 
temperature increase of 2°C can 
result in 20x to 30x increase in 
melt rate

–  Credibility / Likelihood of 2°C rise in 
Southern Ocean ice boundary water 
in next 100 yrs is very low, but 
impact is high

•  Measurement and prediction of 
evolution of AIS ice cavity interface 
water temperature is important for 
constraining future worst-case SLR

Current best estimate heat exchange coefficients
High end heat exchange coefficients

Ocean warming at ice interface potentially important for large SLR cases
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Sea Level Rise Budget 
Implications
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Pfeffer et al, 2008
Source for 2m upper bound in NCA.  1.1m of which 
comes from AIS + GIS

Reasonable but not extreme upper bound:  
Our results agree with there upper bounds 
given conservative, but not extreme, AIS 
parameters and boundary conditions.  
However, if un-expected / extreme conditions 
develop, AIS is capable of dynamically 
sourcing substantially more ice in 100 yrs 
(+1m)

Likely extreme upper bound - Our results 
indicate it is difficult to get this much ice out 
of GIS, even under extreme conditions
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•  Extreme worst-case scenarios show values > 1 m for 
Antarctica; with “realistic worst case” ~0.25-0.4 m 

•  Range of sea level PDFs highly dependent on regional 
dependencies (one vs. “smart” partitions)

•  Loss of backstress leads to contribution of <0.5 m (given 
physics used)

•  Early results are useful for identifying some of the most 
promising new measurements for the sea level rise prediction 
problem, including

–  Finishing high resolution mapping of AIS bed topography
–  Monitoring heat exchange at AIS ocean / ice interface

•  Funding for ice sheet models
–  Proper funding of model development to address missing physics 

(e.g. ice shelf calving)
–  Computational resources for high resolution Monte Carlo runs
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Thank you!


